ovarian carcinoma. Peritoneal dissemination can simulate benign strumosis, a peritoneal seeding of benign SO, and is composed of mature thyroid tissue [2].

Because of the rarity of malignant SO, the optimal surgical and post-operative management has not been defined [1, 2]. Therapy has ranged from radical surgery and chemotherapy, with or without thyroidectomy, to unilateral oophorectomy and preservation of reproductive functions [2]. In patients with residual abdominal disease or with distant metastases, total thyroidectomy followed by the administration of radioactive iodine should be offered [1, 2]. Prognosis as well as survival improves with the administration of radioactive iodine [1, 2]. In one study, no deaths were reported in eight patients who received radioactive iodine for malignant SO with adequate follow up of 7.3 years [2]. Our patient had a good prognosis in spite of having peritoneal metastases. This suggests that the peritoneal metastases would have been effectively treated by radioactive iodine. Prognosis can be monitored using thyroglobulin levels and radioactive scintigraphy [1,4].

Pregnancy is possible after conservative surgery for malignant SO. A few case reports have been published on malignant SO found during pregnancy [6–8]. None of them, however, described successful pregnancy after treatment of malignant SO.

References

A case of pulmonary alveolar microlithiasis

BMAC Balasuriya,† SAM Kularatne‡, and N Ratnatunge§

(Received 10 June and accepted 10 July 2004.)

We report here a case of multiple radiological lung opacities with breathlessness and haemoptysis which turned out to be pulmonary alveolar microlithiasis (PAM).

A 41-year old man was admitted to the Teaching Hospital, Peradeniya on 3 May 2003 with a history of cough, chest pain and increasing breathlessness for one week. He had a history of several similar episodes during the past 18 months. A lung biopsy done earlier suggested pulmonary alveolar microlithiasis. Tuberculosis and malignancy had been excluded.

On admission he had a respiratory rate of 18/min, and reduced chest expansion. There was no cyanosis or digital clubbing. Auscultation revealed diffuse, fine inspiratory crackles, symmetrically distributed over both lung fields. The cardiovascular, abdominal and central nervous system examinations were normal.

The chest radiograph showed diffuse high density micronodules and reticular lines that obliterated the bronchovascular bundles, the margin of the heart and the diaphragm (Figure 1). On the second day of admission he developed massive haemoptysis, became severely hypoxaemic and died despite attempts at resuscitation. At autopsy the lungs were found to be heavy (5 kg) with a multitude of small stones scattered in both lungs. Bilateral pulmonary apical haemorrhages were also noted. There was no calcified disease in the other organs. Microscopic examination of the lungs showed focal haemorrhages, septal arteriolar medial hypertrophy and

† Registrar, ‡Physician, Teaching Hospital and §Professor in Pathology Faculty of Medicine, Peradeniya.

Correspondence: SAMK, Department of Medicine, Faculty of Medicine, University of Peradeniya, Sri Lanka. Tel: 0094 8 388368, fax 0094 8 232343, e-mail:<samkul@sltnet.lk> (Competing interests: none declared). Received 10 June and accepted 10 July 2004.
intra-alveolar deposits of concentrically laminated calcific bodies (Figure 2). These findings confirmed the diagnosis of pulmonary alveolar microlithiasis.

The patient had a long history of chest symptoms. The lungs were studded with tiny stones making them heavy. PAM is a rare disease characterised by widespread calcific intra-alveolar concretions in both lungs [1]. Although the cause of PAM is still unknown, an autosomal recessive inborn error of metabolism of calcium and phosphate has been suggested. The diagnosis is usually confirmed by high resolution CT and transbronchiolar biopsy [2]. The disease has a slowly progressive protracted course.

Disodium etidronate, which is known to inhibit microcrystal growth of hydroxyapatite, is used as therapy in PAM. It should be continued over one year to monitor the regression of calcific densities in the chest radiographs and high resolution CT. Early treatment may retard the progression of PAM.

References