Case reports

Since these malformations are scattered throughout the gastrointestinal tract and new ones may develop later in life, surgical resections should be avoided [1]. When conservative methods fail and the lesions are confined to a particular segment of the gut, surgical resection is recommended.

Stabilisation of the lesions and control of bleeding may be achieved temporarily with certain pharmacological agents [1,3,4] but the lesions recur once the drugs are discontinued. The haemangiomas can also be treated endoscopically either by sclerotherapy or band ligation [5]. Endoscopic laser (YAG) photocoagulation is a newer technique with encouraging results [6]. When there is a familial occurrence, genetic counselling is recommended.

References


Hypocalcaemic fits not responding to intravenous calcium therapy

T M R Gunasekera¹, P A D U Chathuranga¹, P K Banduthilake³, D H Karunathilake⁴ and W Pathirana⁵

Introduction

Symptomatic hypocalcaemia secondary to hypomagnesaemia is a well known phenomenon. It manifests in many different ways. Unless the deficiency of magnesium is detected and treated early, long term neurodevelopmental sequelae may be is unfavourable. Estimation of serum calcium and magnesium in all neonates and infants presenting with seizures of obscure aetiology should be routine. Where facilities for routine magnesium estimation are not available, even a single finding of hypocalcaemia warrants assessment of serum magnesium level in a symptomatic infant. Here we report two infants with primary hypomagnesaemia presenting with convulsions during infancy.

Case reports

Case 1

A 16-day old male neonate was admitted with convulsions since day 12 of life. He is the first born to second degree consanguineous parents who are healthy. He was born at term with a birth weight of 2.8kg, and an uneventful perinatal period. The clinical examination was unremarkable. The biochemical investigations showed serum calcium of 1.58 (normal 2.2-2.7) mmol/l and a serum magnesium of 1.6 (normal 1.7-2.7) mg/dl.

Serum sodium, potassium, chloride and blood glucose were normal. A full septic screen was negative and ultrasound brain scan did not reveal any structural abnormalities. He was stabilised with anticonvulsants and calcitriol initially and was discharged home on oral phenobarbitalone and 1 alpha calcidol. At 3 months he was readmitted with convulsions. On this occasion too, he was hypocalcaemic despite therapy and magnesium level had dropped further to 1.1 mg/dl. His convulsions settled with parenteral magnesium sulphate, and he was discharged home on oral magnesium chloride. He was readmitted at 4 months with symptomatic hypocalcaemia, and the magnesium chloride dose was readjusted. Since

¹Senior Registrar, ²Paediatrician, Lady Ridgeway Children's Hospital; ³BSc student, ⁴Senior Lecturer, Department of Pharmacy, Faculty of Medicine, Colombo 8.

Correspondence: TMRG, e-mail <sanjika@kodak.lk>; telephone 0777 579 656. Received 11 May, and revised version accepted 24 September 2007. Conflicts of interest: none declared.

Ceylon Medical Journal
then he has been seizure-free and developing normally at 1 year of age, and is only on a magnesium chloride supplement.

Case 2

A 9-month old previously healthy female infant of non-consanguineous parents was admitted with a prolonged convulsion on day 3 of a febrile illness. She developed severe stridor and carpopedal spasms after admission. There were no adverse perinatal events and development had been normal. The physical examination was unremarkable.

She had a serum calcium of 1.04mmol/l and magnesium of 0.45mg/dl. Other electrolytes and blood glucose were normal. The CSF examination ruled out a meningoencephalitis. The QT interval was 0.58 s (normal < 0.44). The serum immunoglobulins were in the normal range. The CT scan of the brain revealed calcification in the basal ganglia and the thalamic region. She was stabilised with parenteral magnesium sulphate and calcium gluconate. Later she was converted to oral magnesium chloride. Her subsequent development is normal. She remains seizure free and serum magnesium and calcium levels are normal.

Discussion

Magnesium is the second most abundant intracellular cation and plays a vital role in many enzymatic processes including protein synthesis, glycolysis and nucleic acid metabolism. It is distributed mainly in bone (60%) and in the intracellular compartment (38%).

The rest (2%) is in the extracellular compartment of which about 60% is unbound and metabolically active. The absorption of magnesium is mainly through the ileum and colon. The elimination is mainly renal. The kidney acts as the main conserving deficiency states.

Magnesium deficiency could be primary or secondary. Secondary deficiency occurs in chronic diarrhoea, severe protein energy malnutrition, hypoparathyroidism, renal tubular acidosis and in any hypercalcaemic state. It also occurs secondary to loop diuretics, aminoglycosides and cephalosporins. In babies of toxaemic and diabetic women, transient hypomagnesaemia develops during the neonatal period.

Primary hypomagnesaemia is a rare genetic disorder due to a selective defect in absorption at the small intestine [1]. The inheritance is autosomal recessive [2]. The affected gene is mapped to chromosome 9. Hypomagnesaemia causes hypocalcaemia by various mechanisms, [3,4,5]. Hypomagnesaemia is associated with recurrent tetany and convulsions in early infancy, leading to permanent neurological deficits [6].

Patients with primary hypomagnesaemia usually do not require calcium supplements or vitamin D derivatives long term. The serum of level magnesium should be assessed periodically and dosage adjusted as overdosage leading to hypermagnesaemia can have serious consequences. Early treatment of primary hypomagnesaemia with magnesium supplements will result in normal neurodevelopment.

References