FSH receptors was identified in affected family members. Few mutations in FSH receptors have been reported but only one resulting in a gain of function. This mutation broadens the specificity of receptors, so that it responds to another ligand hCG [1,2]. Mutant FSH receptors lead to hypersensitivity to hCG. The onset and evolution of the syndrome coincides with the usual gestational time course fluctuation in hCG levels [3].

The proband, a 26-year old woman, presented in her second pregnancy with clinical features suggestive of OHSS. The first pregnancy had also been affected by the same condition, and had been terminated. The second pregnancy was spontaneously conceived. The patient had increasing abdominal pain, nausea and vomiting associated with abdominal distention at a period of amenorrhoea of 9 weeks. Ultrasound scanning showed a multieocular mass, measuring 10 cm × 11 cm in both ovaries. Serum hCG levels were within the normal range for the period of gestation. She was managed conservatively with continued surveillance for complications. Subsequently, she underwent elective caesarian section at 38 weeks and delivered a normal baby. Ovarian biopsy was performed at the time of delivery and histology was compatible with OHS and excluded malignancy. Pedigree analysis showed that her two elder sisters had also had clinical features suggestive of OHSS in their pregnancies with no history of ovulation induction.

Although the definitive diagnosis of FGSOHS should be made by analysis of FSH receptors, in the absence of facilities to analyse mutant FSH receptors, our diagnosis was based on clinical features and a highly suggestive family history. Little is known about the pathophysiology of the FGSOHS [4,5]. The syndrome has a range of severity from mild to severe forms with the massive bilateral ovarian enlargement leading to life threatening situations requiring termination of the on going pregnancy [4].

References

D L W Dasanayake, K Linganathan, P S Hettipathirana, G A Ranathunga and D Warnakulasuriya
Castle Street Hospital for Women, Colombo 8, Sri Lanka.

Correspondence: DLWD, e-mail: <lanka.dasanayake@yahoo.com>. Received 28 February 2008 and revised version accepted 15 December 2008. Competing interests: none declared.

To the Editors:

Screening newborns for congenital hypothyroidism

Congenital hypothyroidism (CH) is a common preventable cause of mental retardation with a world wide incidence varying from 1:3000 to 1:4500 live births [1]. It has been estimated that 50,000 newborns each year are at risk of CH in the southeast Asian region [2]. Although screening of newborn for CH has been a routine practice in developed countries for more than 40 years, developing countries have addressed this concern only in the past decade [3]. A study done in August 2005 at Teaching Hospital, Gampola and base hospitals Mawanella and Nikaweratiya showed a high incidence of CH [4]. This stressed the importance of implementing a national screening programme for CH in Sri Lanka. We conducted a pilot study conducted in the Teaching Hospital, Mahamodara to assess the feasibility of a regional screening programme for CH.

This study commenced on 3rd October 2006 after obtaining approval from the Ethical Review Committee of the Faculty of Medicine, University of Ruhuna. Informed written consent was obtained from mothers at the time of drawing blood just before leaving the hospital. The blood spots were collected from 7 hours to 10 days after the
A questionnaire was used to record the demographic data. Heel-prick blood spots were collected on a special filter paper (Schleicher and Schuell No 903) by pre-intern medical officers working in the Nuclear Medicine Unit and Department of Paediatrics of the Faculty of Medicine. They were trained on the heel-prick technique by the paediatrician in the research team. Air-dried blood spots were stored in a sealed plastic box and transferred to the laboratory. Samples with poor quality or inadequate spot were rejected.

Thyroid stimulating hormone (TSH) measurement was done by the radioimmunoassay technique using assay kits obtained from Netria Limited, UK. Neonates with blood spot TSH concentration of 20 mU/L or above in whole blood after 72 hours of birth were considered at risk for CH [2] and were recalled for serum confirmation. The cut-off value for TSH in the blood spots collected prior to 72 hours of life was set at 40 mU/L [2]. A total of 1650 infants were screened by the end of August 2007. Only few blood spots (n = 6) were rejected due to poor quality (sample rejection rate was 0.4%); 1348 neonates (81.7%; 95% CI 81.4%-82.0%) were screened within 72 hours of birth.

Mean blood spot TSH value was 11.47 mU/L (95% CI 10.90-12.01). When the blood spot TSH cut off of 20 mU/L was used, 244 neonates (14.8%; 95% CI 14.1-15.3%) were identified as at risk. 216 of them had TSH <40 mU/L and were not called for serum confirmation. The other 28 neonates (either TSH >20 mU/L and sample collected after 72 hours of birth or TSH >40 mU/L and sample collected before 72 hours of birth) were called for serum confirmation. Only 1 true positive case of hypothyroidism was identified among them so that the incidence of true CH was 1:1650 in our study.

Even though neonatal screening for CH has become a routine practice in most parts of the world for prevention of profound neurological impairment and growth retardation in infants, Sri Lanka still relies on clinical screening due to non-availability of a routine screening programme. Clinical screening causes a delay in diagnosis, treatment and results in a poor outcome of the affected children, causing an enormous burden to the family, society and the country. Estimated incidence of CH in this pilot study is relatively higher than the global incidence. However, it is comparable to that of countries like Iran, Turkey, India and Bangladesh [5-6], and the two hospitals studied in Sri Lanka [4].

The total number of live births reported during the study period (19 months) in the Professorial Obstetrics Unit and Teaching Hospital, Mahamodara was 4,476 and 13,601 respectively. In our study we have assessed only 12.1% of live births in this hospital. If we are to implement a regional screening programme sample collection must be handled by the hospital staff concerned. It is hoped that paediatricians of the health institutions in the South will utilize this service.

Acknowledgements

This study received financial support from the International Atomic Energy Agency (IAEA) Research Grant IAEA-SRL-11958.

References


Manjula Hettiarachchi1, Chandrani Liyanage1 and Nayana Liyanarachchi2, 1Nuclear Medicine Unit and 2Department of Paediatrics, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka.

Correspondence: MH, e-mail: <nmu_galle@yahoo.com>. Received 14 May and revised version accepted 5 December 2008. Competing interests: none declared.